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The influence of surface roughness on the slip behaviour of a Newtonian liquid in
steady planar shear is investigated using three different approaches, namely Stokes
flow calculations, molecular dynamics (MD) simulations and a statistical mechanical
model for the friction coefficient between a corrugated wall and the first liquid
layer. These approaches are used to probe the behaviour of the slip length as a
function of the slope parameter ka = 2πa/λ, where a and λ represent the amplitude
and wavelength characterizing the periodic corrugation of the bounding surface. The
molecular and continuum approaches both confirm a monotonic decay in the slip
length with increasing ka but the rate of decay as well as the magnitude of the slip
length obtained from the Stokes flow solutions exceed the MD predictions as the wall
feature sizes approach the liquid molecular dimensions. In the limit of molecular-
scale wall corrugation, a Green–Kubo analysis based on the fluctuation–dissipation
theorem accurately reproduces the MD results for the behaviour of the slip length
as a function of a. In combination, these three approaches provide a detailed picture
of the influence of periodic roughness on the slip length which spans multiple length
scales ranging from molecular to macroscopic dimensions.

1. Introduction
The possibility of liquid slippage along the surface of a solid and conditions

favouring this behaviour have been debated for over two centuries. Many
historical figures including Bernoulli, Coulomb, Navier, Couette, Poisson, Stokes,
Poiseuille, Hagen and Helmholtz devoted significant effort in identifying the proper
hydrodynamic boundary condition at the surface of contact between a liquid and
solid in relative motion (Goldstein 1938). By the 19th century, three distinct views
had emerged, namely (a) that the tangential speed of the liquid equals that of the
adjacent solid surface (i.e. the no-slip condition), (b) that the liquid slips against a
thin film immobilized by wall imperfections, and (c) that the liquid slips against the
solid surface with a tangential speed proportional to the viscosity and shear rate, as
first proposed by Navier.

The no-slip condition was the most widely accepted at the time given its success
in reproducing the velocity profiles for macroscopic flows. By 1938, the Fluid Motion
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Figure 1. Plane Couette cell geometry used for the MD simulations and continuum
calculations. The surface of the stationary lower wall is represented by a sinusoid with
maximum amplitude a and wavelength λ. The wall separation distance for a = 0 is designated
d. The upper flat wall moves at a constant speed U = 1.0 σ/τ in the MD simulations. The slip
length Ls is computed by linear extrapolation of the velocity field to the value Vx = 0.

Panel of the Aeronautical Research Committee, writing in a landmark two-volume
series (Goldstein 1938) devoted to important developments in boundary layers,
turbulent flow and wakes, concluded that even if the Navier slip condition were
correct, the slip length was likely to be only a moderate multiple of the liquid
molecular mean free path and therefore too small to influence the behaviour of
macroscopic flows. Recent developments in microfluidic and nanofluidic devices have
renewed interest in the problem of slip, where its influence is expected to be significant
even as the Reynolds number Re → 0.

In postulating the slip boundary condition, Navier invoked a similar basis to that
which forms the foundation of the equations of motion for a viscous fluid. He argued
that in the presence of slip, the liquid motion must be opposed by a force proportional
to the relative velocity between the first liquid layer and the solid wall (here assumed
stationary). Reasoning that the tangential stress is continuous across this interface,
he concluded that

βVs = µ∂V/∂n, (1.1)

where Vs is the tangential liquid speed at the solid surface, n is the unit normal
pointing away from the solid, ∂V/∂n is the liquid shear rate at the solid surface, µ is
the liquid viscosity and β is the friction coefficient. The ratio µ/β , which he assumed
constant and independent of the shear rate, is nowadays designated the slip length Ls .
For the Couette geometry shown in figure 1 where the lower wavy wall is stationary
and the upper flat wall translates at a constant speed U, the slip length is obtained by
linear extrapolation of the tangential velocity component to zero velocity within the
solid phase. In investigating the spreading of cells and viscous droplets on a planar
solid substrate, Greenspan (1978) invoked a similar slip condition for free-surface
flows where Ls is replaced by the ratio α/3h, where α is the slip coefficient and h(x, y)
the local liquid film thickness. This alternative condition allows for increased slip
in regions of high shear rate. Both slip conditions eliminate the stress singularity in
corner flows (Moffatt 1964; Huh & Scriven 1971).

There remains to this day significant debate concerning the validity of slip
conditions as well as the degree of slip possible at liquid/solid interfaces. Beyond
the form originally proposed in (1.1), there is now interest in determining what



Influence of periodic wall roughness on slip behaviour 27

molecular-level parameters govern the degree of slip and whether the slip length Ls

depends on the local shear rate. During the past decade, experimentalists have used
optical and rheological techniques of increasing resolution to deduce estimates of the
slip length. Among these are evanescent-wave-induced fluorescence combined with
photobleaching (Migler, Hervet & Leger 1993; Pit, Hervet & Leger 2000; Schmatko,
Hervet & Leger 2005), microparticle image velocity (Tretheway & Meinhart 2002;
Jin et al. 2004), precision flow metering (Choi, Westin & Breuer 2003), fluorescence
cross-correlation of labelled tracer particles (Lumma et al. 2003) and the surface force
apparatus (Horn et al. 2000; Baudry et al. 2001; Zhu & Granick 2002; Cottin-Bizonne
et al. 2005), which confines liquid films to gap sizes of the order of nanometres. Given
some lingering discrepancies among the results of different groups, uncertainties in
the composition of the liquid film adjacent to a solid wall (which influences the
extracted value of the slip length), and recent reports of spontaneous nucleation of
gas nanobubbles at water/hydrophobic interfaces (Ishida et al. 2000; Tyrrell & Attard
2001; Steitz et al. 2003), various questions involving the slip length remain unsolved.
The increasingly popular field of micro- and nanofluidics has also introduced some
important practical considerations, such as what are the best liquids or surface
treatments to use in order to maximize slip and therefore reduce frictional losses
while minimizing device size and input power. Answers to these questions require a
much better understanding of the molecular origin of slip in the presence of ubiquitous
substrate roughness.

1.1. Analytical studies of liquid slip

In addition to practical considerations related to drag reduction at low Re, there
are certain fundamental hydrodynamic problems which require a modification of the
no-slip boundary condition in order to avoid spurious flow singularities. For example,
Moffatt (1964) derived a number of similarity solutions for the velocity fields arising
in corner flows. He examined the flow of a viscous liquid near a sharp corner
between two flat planes (either two rigid or one rigid and one free liquid surface) and
determined that the no-slip boundary condition causes an r−1 divergence in the shear
stress, where r = 0 is the corner point. Huh & Scriven (1971) and Dussan & Davis
(1974) noted this is a non-integrable singularity which also arises in corner flows
describing the region near a moving contact line, as in a liquid droplet spreading on a
solid substrate. This singularity can be eliminated by replacing the no-slip boundary
condition with a slip condition (Dussan V. 1979).

The idea first proposed by Girard (Goldstein 1938) that a liquid undergoes slip
against a thin layer immobilized by surface imperfections directed attention toward
the influence of wall roughness. Hocking (1976) examined the behaviour of a fluid
interface separating two immiscible fluids flowing across a corrugated surface defined
by a periodic array of parallel grooves. For sufficiently deep corrugations where one
liquid is trapped in the hollows of the wall corrugation, he showed that the second
liquid will essentially slide against the liquid-filled grooves with a finite shear stress.
He estimated that the effective slip length in such a two-fluid system is proportional to
the hollow depth if the corrugation is shallow, and to the hollow separation distance
if the corrugation is deep. Richardson (1973) considered whether the no-slip condition
is just an inevitable consequence of fluid trapping by surface roughness. He derived
the inner Stokes solution corresponding to the flow of a liquid against a periodically
undulated substrate representing a boundary of no-slip or no-shear (i.e. perfect slip).
Surprisingly, the no-slip condition emerges as the relevant macroscopic boundary
condition in both cases. Deviations from the no-slip condition enter at the same order
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of magnitude as the characteristic size of the wall asperities (assumed to be much
larger than the liquid molecular size). Jansons (1988) examined the flow of a liquid
near a wall containing a random array of microscopic defects occupying a small area
fraction. In agreement with Richardson (1973), he found that a local slip condition
along the surface of a roughened boundary leads to an effective no-slip condition at
macroscopic length scales. Miksis & Davis (1994) reconsidered this configuration in
the limit of small-amplitude but arbitrary wall roughness and derived in systematic
fashion the appropriate boundary conditions for flow over a roughened dry or liquid-
wetted surface. For single-phase liquid flow, the slip coefficient appearing in the
Navier condition was shown to be linearly proportional to the average amplitude of
the wall roughness. For a second fluid completely wetting the roughened wall, the
slip coefficient depends on the viscosity ratio of the two liquids and the dynamic
behaviour of the liquid–liquid interface through the relevant capillary number. Tuck
& Kouzoubov (1995) extended this analysis by including inertial corrections for
low-Reynolds-number flow past a solid boundary of arbitrary roughness. Use of
the no-slip condition along the wavy boundary leads to a backflow near the wall,
whose profile can be equivalently obtained by applying a slip boundary condition
along the plane defined by the geometric mean surface. Along the mean surface
plane, Tuck & Kouzoubov (1995) showed that the slip length is linearly proportional
to the wavenumber corresponding to the weighted mean of surface roughness and
quadratically proportional to the amplitude corresponding to the RMS value of
surface roughness. Einzel, Panzer & Liu (1990) and Panzer, Liu & Einzel (1992)
derived an analytic expression for the slip length which explicitly includes microscopic
slip as well as the effect of local wall curvature (representative of mesoscopic surface
roughness). The details of this model will be presented in § 4.1 since the results of
this hydrodynamic analysis form the basis of comparison to the molecular dynamics
studies reported here.

1.2. Molecular dynamics studies of liquid slip

During the past decade molecular dynamics (MD) simulations have emerged as
a powerful tool for probing the microscopic behaviour of liquids in bulk and
near interfaces (Koplik & Banavar 1995). Numerous studies have shown how the
interaction potential and molecular packing or entropy constraints near a solid
substrate influence both in-plane and out-of-plane ordering in the adjacent liquid
molecules. The degree of in-plane ordering is characterized by the peak value of
the liquid structure factor describing the molecular ordering in planes parallel to a
flat wall. Out-of-plane ordering is manifested by multiple density oscillations that
gradually decay toward the average value of the liquid density in the bulk. In general,
the higher the degree of substrate-induced liquid ordering near a flat smooth wall, the
smaller the degree of slip and the larger the momentum transfer between the liquid and
solid. The molecular picture which has emerged, based on simplified statistical mecha-
nical models (Bocquet & Barrat 1994; Barrat & Bocquet 1999a , b; Priezjev & Troian
2004; Priezjev, Darhuber & Troian 2005) and MD simulations (Thompson & Robbins
1990a , b; Thompson, Brinckerhoff & Robbins 1993; Thompson, Robbins & Grest
1995; Koplik & Banavar 1995; Gao, Luedtke & Landman 1997; Jabbarzadeh,
Atkinson & Tanner 2000; Gao, Luedtke & Landman 2000) (and many references
therein) indicates that the slip length is strongly influenced by the strength of the
liquid/solid interaction potential and the degree of commensurability between the
liquid molecules and wall atoms. This commensurability is quantified by the amplitude
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of density oscillations near the wall as well as the in-plane structure factor and
diffusion coefficient within adjacent layers. The no-slip condition emerges as one
limit of a number of allowable boundary conditions ranging from perfect slip (i.e.
infinite slip length) to epitaxial locking of one or two liquid layers to the solid wall (i.e.
negative slip length). For the flow of two immiscible fluids across the surface of a solid
(which includes the well-studied problem of a droplet spreading on a smooth solid
substrate), MD simulations have shown just how sensitive the spreading dynamics
and motion of the contact line are to the molecular nature of the liquid/solid interface
(Thompson & Robbins 1989; Thompson et al. 1993). Recent MD studies of simple
and polymeric fluids subject to steady planar shear also reveal an interesting power-
law dependence of the slip length on shear rate even at small Reynolds number
(Thompson & Troian 1997; Priezjev & Troian 2004).

The influence of surface roughness on liquid flow has only recently been investigated
by MD simulations. Jabbarzadeh et al. (2000) explored the behaviour of hexadecane
and shorter alkane molecules subject to planar shear between two sinusoidally
roughened walls. Long-chain molecules generate larger slip velocities with increasing
sinusoidal period (i.e. smoother surfaces) and smaller slip velocities with increasing
sinusoidal amplitude (i.e. rougher surfaces). The fluid viscosity and normal pressure
were also found to decrease slightly with increasing wall period. Gao et al. (2000)
investigated the flow behaviour of hexadecane against two uncorrelated rough surfaces
prepared in the simulations by melting and then rapidly cooling a 10-layer FCC
molecular stack with an exposed (110) surface. An interfacial fluid layer was found
to adhere to the roughened wall which essentially recovers the no-slip condition.
Subsequent liquid layers exhibited partial slip over the adhered layer. It was noted
that molecular-scale roughness induces frustration in the molecular ordering near
the solid. Galea & Attard (2004) modelled surface roughness by varying the size
and spacing of the wall atoms while maintaining a constant packing fraction. The
density oscillation amplitude increases for smoother substrates, since more efficient
packing of liquid molecules can occur within each layer adjacent to the wall. The
no-slip condition was recovered in the limit where the wall atom size and spacing
are commensurate with those in the liquid. In general, larger slip lengths are possible
along smoother and locally compact walls since the likelihood of liquid trapping by
crevices and bumps is significantly reduced.

In a recent study (Priezjev et al. 2005), we examined the flow of a Lennard–Jones
(LJ) fluid subject to planar shear in a Couette cell. The bottom stationary surface was
patterned by a periodic array of stripes representing alternating regions of finite slip
(or no-slip) and no-shear (i.e. perfect slip). These mixed boundary conditions provide
a first-order approximation to a periodic array of gas nanobubbles pinned against
a solid wall. Random arrays of such nanobubbles have recently been observed in
experiments (Ishida et al. 2000; Tyrrell & Attard 2001; Steitz et al. 2003). The different
boundary conditions were achieved by adjusting the magnitude of the attractive term
in the LJ interaction potential used in the MD simulations which controls the degree
of liquid affinity for the solid wall. Direct comparison of the numerical results from
a Stokes flow analysis to the MD simulations showed excellent agreement between
the velocity profiles and the slip length for stripe periods exceeding approximately
10–20 molecular diameters for flow configurations either parallel or transverse to the
stripe pattern. For smaller stripe periods, the transverse flow configuration generated
slip lengths below the hydrodynamic predictions. This behaviour was attributed to
an effective molecular-scale roughness corresponding to the heterogeneity in liquid
affinity along the solid surface.
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The focus of the current work is a systematic investigation of the effects of
topological roughness for the system geometry shown in figure 1. We investigate the
behaviour of the slip length with increasing slope parameter ka using three approaches,
namely MD simulations, continuum calculations and a statistical mechanical model
which describes the friction coefficient between a wavy wall and the first liquid layer.
In the MD simulations, the wavy wall is constructed by sinusoidal displacement
of wall atoms comprising an FCC lattice. This modulation induces a variation in
wall atom spacing as seen by the fluid, an effect which in itself modifies the slip
length. Corrections incorporating this effect are properly accounted for in making
comparisons to various continuum models. In this study, the parameters characterizing
the wall/fluid interactions were chosen to reproduce partially wetting boundary
conditions. In the absence of any imposed wall corrugation, the intrinsic slip length,
designated throughout by the parameter Lo, is comparable with the wall separation
distance d. The parameters in the molecular model were specifically chosen to yield
an appreciable degree of slip in order to provide a sufficient range for study since the
surface roughness causes a rapid decay in slip length with increasing ka.

Implementing the MD simulations described in § 2, we first investigate the velocity
profiles for planar shear flow against a wavy wall by independently varying the
corrugation amplitude and wavelength, as discussed in § 3. We then review the asymp-
totic analytic result of Einzel et al. (1990) and Panzer et al. (1992) for the effective slip
length obtained for pressure-driven (Stokes) flow bounded by two well-separated and
wavy walls. This analysis highlights the effect of local wall curvature (or equivalently
periodic surface roughness) in modulating the degree of slip. In §4, direct comparison
is made between the MD results and continuum solutions in the Stokes regime for
plane Poiseuille flow (Einzel et al. 1990; Panzer et al. 1992) and plane Couette flow.
Good agreement is obtained in the limit of small-amplitude and large-wavelength
corrugations. Improved agreement is obtained when the slip length substituted into
the Einzel et al. relation is corrected for the variable wall atom spacing induced in
the MD simulations by sinusoidal displacement of the wall molecules. Progressive
reduction in the corrugation wavelength causes a suppression of the slip length with
respect to the continuum predictions. To gain further insight into the behaviour
of the liquid near the wall for molecular-scale corrugations, we extend the model
by Barrat & Bocquet (1999a , b) in §5 by proposing a wall potential consisting of
two competing wavelengths, one emerging from the wall lattice and the other from
the imposed topological wall corrugation. This analysis is based on a Green–Kubo
derivation of the friction coefficient between a wavy solid wall and the first adjacent
layer of liquid molecules. In the limit where λ approaches molecular-scale dimensions,
the MD simulations exactly reproduce the analytic result for the behaviour of the
slip length with increasing corrugation amplitude.

2. Details of the molecular simulation method
Interactions between fluid (f) particles separated by a distance r were modelled by

a Lennard–Jones (LJ) potential

VLJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2.1)

whose minimum value ε corresponds to a particle separation distance 21/6σ . Wall (w)
and fluid particles also interact through an LJ potential with parameters εwf =0.7ε and
σwf = σ . The interaction potentials were truncated at a cutoff radius rc =2.2 σ ; studies
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using a larger truncation radius rc =2.5 σ generated very similar velocity profiles.
The smaller cutoff radius was therefore used in order to speed the computations
(Thompson & Troian 1997).

The simulation cell consisted of two parallel wall lattices each containing 756
particles bounding an interstitial slab of 5040 fluid particles. Each wall consisted of
two layers whose atomic sites define the (111) plane of a face-centred cubic (FCC)
lattice with density ρw = 3.38ρf , where ρf =0.81 σ −3. The direction of shear, oriented
along the x̂-axis, was defined by the [112̄] vector of the FCC lattice. The wall
separation distance (see figure 1) was held fixed at a value d =30.47 σ . The surface
area of the horizontal walls measured Lx × Ly = 29.20 σ × 7.22 σ ; periodic boundary
conditions were enforced along the x̂- and ŷ-axes. The equations of motion governing
the coordinate and momentum values of the ith particle were integrated using a stan-
dard fifth-order Gear predictor–corrector scheme (Allen & Tildesley 1987) with a

time step �t = 0.005τ , where τ =
√

mσ 2/ε represents the characteristic time scale of a
Lennard–Jones fluid with particle mass m. The equation of motion for the acceleration
along the ŷ-axis is given by

mÿi = −
∑
i �=j

∂VLJ

∂yi

− mΓ
dyi

dt
+ Fi(t). (2.2)

Verlet lists were used to reduce the computational effort in calculating interatomic
forces (Allen & Tildesley 1987). The last two terms on the right, which are absent from
the equations of motion for the x- and z-components of the force on particle i, ensure
isothermal fluid conditions by weakly coupling the particle dynamics to a Langevin
thermal reservoir (van Gunsteren, Berendsen & Rullmann 1981; Grest & Kremer
1986; Thompson & Robbins 1989, 1990 b; Thompson et al. 1993; Stevens et al. 1997).
The friction coefficient Γ regulates the heat flux from the system and Fi represents a
Gaussian random force with zero mean and variance 2mΓ kBT δ(t) where T is the fluid
temperature, δ(t) is the delta function, and kB is Boltzmann’s constant. In this study,
T =1.1 ε/kB and Γ = 1.0τ−1. This value of Γ is large enough to remove heat from
the system without inducing substantial changes in temperature but small enough
to minimize disturbances to the particle trajectories. It has previously been shown
for similar parameter values that the fluid temperature remains constant provided
the fluid shear rate γ̇ < U/d � 0.16τ−1(Thompson & Robbins 1990 b). In our studies,
the shear rate in the fluid never exceeded 0.033τ−1. Such isothermal control has
been shown to be effective by just including the damping and Langevin noise terms
in the ŷ-component of the equation of motion, i.e. the direction perpendicular to
the direction of shear (Thompson & Robbins 1989; Thompson et al. 1993; Stevens
et al. 1997; Thompson & Troian 1997). The fluid density and temperature used here
represent a well-defined liquid phase at a temperature approximately 30 % above the
melting point (Heyes 1998). The validity of MD simulations as a probative tool was
first established with reference to liquid argon for which σ = 3.4 Å, ε/kB = 120 K ,
m = 6.69 × 10−23 g, and τ =2.161 × 10−12 s. A typical time step �t = 0.005 τ therefore
corresponds to about 10−14 s which yields total run times in the microsecond range
(see below).

The fluid was subjected to steady planar shear by translating the upper flat wall
at a constant speed U = 1.0 σ/τ along the x̂-axis. The lower wavy wall remained
stationary. The wavy wall was constructed by vertically displacing all particles within
the (111)-plane of the FCC lattice by a distance �z =a sin(2πx/λ), where a denotes
the displacement amplitude and λ the displacement wavelength, as designated in
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Figure 2. Velocity field vectors in the vicinity of the corrugated wall. The vectors represent
the average particle velocities in the (x, z)-plane as computed from MD simulations for
a = 0.1 σ, λ= 4.18 σ and d = 22 σ . The remaining parameters for the MD simulations are
specified in the text. Black dots signify the centres of mass of the lower wall particles. The
vector shown at the bottom of the figure represents the velocity U =1.0 σ/τ of the upper flat
wall. Vx(z) is essentially unidirectional beyond a vertical distance of a few particle diameters
(about 2σ–3σ ) from the wall.

figure 1. This surface corrugation represents a periodic roughening of the lower wall
boundary. For the MD simulations, the plane defined by z = 0 was located at the
mid-plane of the fluid phase. In this study, the corrugation wavelength spanned the
range 1.82 σ � λ� 29.2 σ for 0 � ka � 1; the corresponding corrugation amplitude
was in the range 0 � a � 4.65 σ . After an equilibration period of �t =2 × 104τ , the
steady-state velocity field Vx(z) was reconstructed by averaging the particle speeds
within horizontal slices �z = 0.7 σ for a time interval �t ≈ 2 × 105τ . The simulations
were performed on a 64 processor Linux Beowulf cluster. A typical run for computing
velocity profiles required approximately 400 hours of CPU time. The Reynolds number
based on an upper wall speed U = 1.0 σ/τ , a wall separation d = 30.47 σ and a fluid
shear viscosity (µ= 2.2 ± 0.2ετ/σ 3 (Thompson & Troian 1997; Priezjev & Troian
2004) was estimated to be Re � 10. This estimate represents an upper bound not
actually achieved within the fluid phase since slip at the walls reduces the internal
shear rate. These simulation parameters generated an intrinsic slip length 10.0 ± 0.3 σ

for flow bounded by two flat wall (i.e. a = 0). In what follows, this intrinsic slip
length is designated Lo; the effective slip lengths obtained in the presence of wall
corrugation are instead designated Leff in the continuum analysis and LGK

s in the
statistical mechanical model.

3. Velocity profiles for a viscous fluid in planar shear against a wavy wall
The simulations described in § 2 were used to compute the velocity profiles as a

function of the slope parameter ka. Shown in figure 2 is a representative projection in
the (x̂, ẑ)-plane of the average particle velocities close to a wavy wall for a =0.1 σ and
λ=4.18σ . The black dots indicate the centre-of-mass positions of the wall particles.
The velocities were obtained by averaging the particle speeds within a narrow x-z bin
measuring 1.0 σ × 0.5 σ . For the small-amplitude distortions examined, the velocity
fields retained a linear profile characteristic of plane Couette flow except within a
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Figure 3. Velocity profiles Vx(z) for U =1.0 σ/τ computed from MD simulations for increasing
wall wavelength λ at fixed amplitude a =0.1 σ . Owing to the small corrugation amplitude, the
profiles are linear throughout, as expected for steady plane Couette flow. The slip velocity
at the upper and lower walls increases with increasing wavelength. The choice λ=1.82 σ
essentially reproduces the no-slip condition at the lower wavy wall (left vertical axis) despite
a finite slip velocity at the upper flat wall (right vertical axis).
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Figure 4. Velocity profiles Vx(z) for U =1.0 σ/τ computed from MD simulations for increasing
wall amplitude a at fixed wavelength λ= 3.65 σ . The slip velocity at the upper and lower walls
decreases with increasing corrugation amplitude. The choice a = 0.38 σ reproduces the no-slip
condition at the lower wavy wall (left vertical axis) despite a finite slip velocity at the upper
flat wall (right vertical axis).

few molecular diameters (2σ − 3σ ) of the wall boundary. Shown in figure 3 are
representative velocity profiles Vx(z) for increasing corrugation wavelength at fixed
amplitude a = 0.1 σ . The left vertical axis corresponds to the mean position of the
bottom wavy wall and the right vertical axis to the position of the upper flat wall.
Figure 4 demonstrates similar behaviour as a function of increasing corrugation
amplitude at fixed wavelength λ= 3.65 σ . Figure 3 indicates that the slip velocity
at the wavy wall decreases for smaller values of λ. As shown in figure 4, larger
corrugation amplitudes also decrease the degree of slip. In fact, the parameter values
a =0.10 σ and λ= 1.82 σ generate a no-slip condition at the wavy wall despite finite
slip at the upper wall. This indicates that a corrugation amplitude only 1/10 the
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effective LJ particle diameter is sufficient to immobilize a thin fluid layer for small
corrugation wavelengths. In these studies, it was found that a slope ratio ka = 0.3
effectively reproduced a no-slip condition.

These results clearly show how the intrusion of the wall boundaries into the fluid
slows the flow speed and diminishes the value of the slip length. Previous studies by
Thompson & Robbins (1990 b) have shown that fluid adhesion and even epitaxial
locking of the fluid to the supporting lattice can also occur with flat walls for larger
values of εwf (i.e. larger affinity between the fluid and wall particles) and smaller
ratios of fluid to wall density. In general, the more attractive the interaction coupling
between the fluid and solid particles and the more commensurate the length scales
between the wall feature sizes and the molecular diameter of the fluid particles, the
more effective is surface roughness in slowing or even trapping the fluid in the wall
interstices.

In the next section we examine the functional behaviour of the slip length with
increasing ka. Results from the MD simulations are directly compared to Stokes
flow solutions. For the molecular simulations, linear extrapolation of the velocity
profiles beyond the bottom wall was used to estimate the corresponding slip length,
as indicated by the schematic diagram in figure 1. Direct comparison between these
two approaches sheds some light on how the granularity or molecular nature of the
fluid causes systematic deviations from hydrodynamic predictions.

4. Comparison of molecular dynamics and continuum solutions
Koplik & Banavar (1995) provide an extensive discussion of the methods of

molecular dynamics simulations as applied to a variety of viscous flows and the future
prospects of direct comparison with continuum-based predictions. They conclude
that molecular simulations, which are strictly based on small fluid volume size and
nanosecond time intervals, can nonetheless provide a successful description of fluid
flow over a range of length scales from molecular to macroscopic dimensions. Our
previous study of flow over a chemically patterned surface (Priezjev et al. 2005) and
the current study for flow over a topologically corrugated substrate indicate good
correspondence with hydrodynamic predictions provided the length scale associated
with wall inhomogeneities is larger than about 10σ–20σ .

4.1. Plane Poiseuille flow with wavy walls: Stokes-flow solutions

Einzel et al. (1990), Panzer et al. (1992) and Einzel & Parpia (1997) investigated
the hydrodynamic flow of quantum liquids in restricted geometries. Experimental
measurements at the time seemed to suggest smaller slip lengths than those computed
from the generalized Landau–Boltzmann equation for the motion of quasi-particles,
the elementary excitations in quantum fluids. Hydrodynamic predictions for normal
3He also seemed to overestimate the degree of slip in Couette cells whose surfaces were
wetted by a thin layer of superfluid 4He, which provides a friction-free liquid coating.
Panzer et al. (1992) explored the role of surface imperfections in reducing the values
of the slip length. Within the Stokes approximation, they analysed pressure-driven
flow of a Newtonian liquid confined by two wavy walls. They isolated the effects of
local substrate curvature and derived an expression for the effective slip length as a
function of ka. An asymptotic analytic solution was obtained in the limit ka � 0.5.
To satisfy the continuum approximation, it was assumed that the local radius of
curvature describing the wall roughness was much larger than the molecular mean
free path of the liquid.
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For a two-dimensional Cartesian coordinate system with the origin situated at the
wavy boundary, the Navier slip condition is generalized to

1

Ls(x)
=

1

Lo

− 1

R(x)
, (4.1)

where Lo denotes the intrinsic slip length for a flat wall and R(x) represents the
local radius of curvature within the fluid medium along the flow direction. The liquid
curvature is defined as positive for flow within an indentation and negative for flow
over a solid bump (Einzel et al. 1990; Panzer et al. 1992). In the limit where the radius
of curvature characterizing the flow R � Lo, (4.1) reduces to the Navier slip condition
corresponding to a flat surface. The symmetry condition Vx(x, z) = Vx(x, d − z) was
also used to simplify the analysis. Additional simplifications were obtained by
assuming that the surface corrugation is spatially periodic and that the corresponding
amplitude a and wavelength λ=2π/k are much smaller than the wall separation
distance d. Their analysis showed that the Fourier components Cn for the contribution
to the fluid pressure induced by the wall curvature decay exponentially with increasing
distance z from the bottom wall according to Cn ∼ exp(−nkz). The perturbation
pressure caused by the wall modulation therefore penetrates the fluid only a distance
on the scale of the corrugation wavelength.

In the limit of small ka (i.e. the corrugation amplitude is much smaller than the
wavelength), Panzer et al. (1992) showed that

lim
kLo→0

kLeff = kLo − k2a2wo(ka), lim
kLo→∞

kLeff =

(
1

kLo

+
k2a2

w∞(ka)

)−1

, (4.2)

where

wo(ka) =
1 − (ka)2/4 + 19(ka)4/64 + O[(ka)6]

1 + (ka)2 − (ka)4/2 + O[(ka)6]
(4.3)

and

w∞(ka) =
1 − 5(ka)2/4 + 61(ka)4/64 + O[(ka)6]

1 + (ka)2 − (ka)4/2 + O[(ka)6]
. (4.4)

The normalized value of the effective slip length, namely kLeff , is bounded above
by w∞/(ka)2 and bounded below by (ka)2wo. As expected, the correction term to
the effective slip length in the limit kLo → 0 is a negative quantity, which Panzer
et al. (1992) noted is due to the reduction in the effective wall separation distance d −
2ka2|wo|. They also showed that the asymptotic expansions in (4.2)–(4.4) reproduce the
results of the full numerical solutions for ka � 0.5. In completing their analysis, they
also provided an approximate analytic expression for Leff which smoothly interpolates
between the upper and lower bounds of the effective slip length, namely

Leff =
Low∞(ka) − [ka2wo(ka)]/(1 + 2kLo)

1 + k3a2Lo

. (4.5)

4.2. Planar shear flow near a wavy wall: MD simulations

To compare our MD results with the analytic expression (4.5) for ka � 0.5, it was
necessary to incorporate an additional correction to the intrinsic slip length Lo to
account for the variation in wall atom spacing caused by the substrate corrugation.
As discussed in § 2, all particles comprising the two-layer solid wall were vertically
displaced from their original positions within a flat plane by a distance �z = a sin(kx).
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Figure 5. Results of MD simulations for the behaviour of the slip length with increased
stretching parameter s, as defined in § 4.2. The continuous line represents a fourth-order poly-
nomial fit in the variable p = s − 1, where Lo(p)= 10.0 − 44.8p − 38.3p2 + 429.7p3 − 572.1p4.
The inset shows the density-corrected slip length Lo(s) re-plotted as a function of ka.

The subsequent variation in wall atom spacing along the corrugated surface naturally
affects the interaction forces between the fluid and wall particles. In comparison to a
flat wall with constant wall atom spacing and density ρw , the local wall particle density
as seen by the fluid decreases in proportion to the boundary slope dh/dx. The steeper
the local slope, the larger the inter-particle spacing and the smaller the effective local
wall density. As described next, we incorporated this effect in an averaged way by
introducing an overall stretching parameter. Previous MD studies of steady plane
Couette flow bounded by flat walls (Thompson & Robbins 1990 b) indicate that a
smaller ratio between the wall and liquid densities leads to a reduction in slip length
since the fluid particles can be better accommodated within the interstices of the wall
lattice particles. A similar effect is introduced by the variable wall spacing caused by
the sinusoidal wall modulation.

To determine the approximate correction factor for Lo, we conducted a set of
MD simulations for Couette flow confined by atomically flat walls where the spacing
between wall particles was uniformly stretched by a factor s. This stretching parameter
reduces the average wall density to ρw/s. To maintain a constant bulk fluid density, the
wall separation distance d was also decreased accordingly. Shown in figure 5 is a plot
of the ‘density-corrected’ slip length Lo(s) computed in this way. The continuous line
overlying the data represents a fourth-order polynomial fit in the variable p = s − 1.
The inset figure shows the density-corrected slip length re-plotted as a function of ka.
As expected, the slip length decreases monotonically with increasing s since progressive
stretching of the wall particle positions allows deeper embedding of the fluid particles
within the wall matrix. In this study, the no-slip condition was reproduced for s ≈ 1.3.
Beyond this value, the effective slip achieves negative values indicating immobilization
of the first fluid layer by the wall corrugations.

In order to account for the variable wall atom spacing induced by the corrugated
boundary in the MD simulations, we used in the continuum analysis the data plotted
in figure 5 but replaced the stretching parameter s by the average value 〈s〉 =C/λ,
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Figure 6. Comparison of MD results (open symbols–identical data in (a–c)) for the effective
slip length as a function of slope parameter ka with Stokes flow solutions (dashed lines) for
three cases. (a) Dashed lines represent the asymptotic expression (4.5) where Lo = 10.0 σ for
Poiseuille flow against wavy walls in the limit of large wall separation distance. (b) Dashed lines
represent the asymptotic expression (4.5) where Lo has been replaced by the density-corrected
slip length, Lo(s), as specified by the polynomial curve in figure 5. (c) Dashed lines represent
full numerical solutions for plane Couette flow over a single wavy wall subject to a constant
slip length Lo at the upper wall and a slope-dependent (i.e. local) slip length Lo(s) at the
bottom wall, as described by the polynomial curve in figure 5.

where the contour length C=
∫ λ

0
[1 + (dh/dx)2]1/2 dx =

∫ λ

0
[1 + a2k2 cos2(kx)]1/2 dx.

Figure 6 represents a direct comparison of the MD results (the same MD data in
(a)–(c)) with continuum predictions based on Stokes flow solutions for three different
cases, namely two based on the analytical solutions for Poiseuille flow between two
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wavy walls derived by Einzel et al. and one based on numerical studies of Couette
flow with a single stationary wavy wall, which corresponds exactly to the geometry
used in the MD simulations. The dashed curves in figure 6(a) represent the solutions
(4.5) (valid strictly for ka � 0.5) for Lo =10.0 σ . The dashed curves in figure 6(b)
represent solutions where the slip length substituted into (4.5) has been corrected
for the variable wall spacing by replacing Lo by Lo[〈s〉] as discussed in figure 5.
The maximum value of the stretching parameter was s = 1.21. This correction yields
improved agreement between the MD and continuum predictions in the limit of small
ka and large λ.

The dashed curves in figure 6(c) represent numerical solutions in the Stokes limit
for plane Couette flow in the presence of a single wavy wall whose surface is subject
to a local slip condition based on the correction in figure 5. (The general solution
procedure follows a derivation similar to that used previously for investigating plane
Couette flow over a flat and chemically patterned surface (Priezjev et al. 2005).)
The numerical solutions were obtained using the finite-element package FemLab 3.1
(COMSOL, Inc., Burlington, MA) with triangular elements and cubic basis functions.
The wavy wall boundary was approximated by 400 line segments per half-period and
the local slip length determined from the local boundary curvature. The slip length in
the presence of a wavy wall was determined by comparison with numerical solutions
for Couette flow between two flat walls separated by a distance d subject to slip
lengths �upper = Lo and �lower =Leff . The value of �lower was adjusted until the flow rate
Q obtained with flat walls matched the flow rate computed with one wavy wall. Since
the velocity profile for Couette flow bounded by flat homogeneous walls is perfectly
linear, the effective slip length follows from simple geometric considerations where

Leff

d
=

(1 + �lower/d)A − 1

2 − A
and A =

2Q

Ud
. (4.6)

Further details will appear in a future publication (Darhuber, Priezjev & Troian 2006).
The continuum solutions for plane Poiseuille and Couette flow in figures 6(b) and
6(c) in the limit of small ka and large λ (i.e. λ=29.2 σ and 14.6 σ ) coincide almost
exactly. This is probably because both velocity profiles in the vicinity of a slightly
corrugated wall remain linear in z (i.e Couette-like), as is the case near perfectly flat
walls. As an aside, the continuum solutions shown in figure 6(a–c) were obtained
in the Stokes limit where Re =0, while the MD simulations correspond to solutions
for which Re � 10. Small inertial contributions in the MD simulations may be partly
responsible for the small discrepancies observed between the MD and continuum
results for low and moderate values of ka and large λ.

For all three cases shown in figure 6(a–c), the effective slip length diminishes
with increasing slope parameter ka. The smaller the corrugation wavelength λ, the
more effective is the surface roughness in reducing the magnitude of the slip length.
Good agreement between the various continuum solutions and the MD simulations
is only obtained in the limit of small ka and large λ (i.e. λ= 29.2 σ and 14.6 σ ).
For small but fixed values of ka, the correspondence worsens as λ approaches
the molecular length scale σ . In this limit, the fluid particles, characterized by an
effective diameter σ , experience a wall corrugation of comparable size. Trapping
effects resulting from such commensurability in length scales cannot be captured
within a hydrodynamic description since the continuum approximation dictates that
length scales characterizing the flow geometry and boundaries must be significantly
larger than the fluid molecular size. The agreement between the MD and continuum
solutions also worsens with increasing values of ka; the continuum results shown in
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figure 6(c) consistently overestimate the slip length with respect to the molecular-based
simulations.

We investigate next if it is possible within a simplified statistical mechanical model
to describe the behaviour of the fluid in the limit where the fluid particles are of
comparable size with the wall inhomogeneities. This exercise helps reveal the molecular
basis for liquid slip based on consideration of the friction coefficient characterizing
the fluid/solid interface.

5. Green–Kubo analysis of the friction coefficient for molecular scale wall
corrugation

In previous work (Bocquet & Barrat 1994; Barrat & Bocquet 1999a , b), it has
been shown that the dependence of the slip length on molecular parameters can
be computed from transport relations based on the fluctuation–dissipation theorem
(Onsager 1931). This theorem relates the linear response of a system subject to a small
external perturbation to the relaxation of spontaneous fluctuations in equilibrium.
The approach, based on a Green–Kubo (GK) analysis (Heyes 1998), successfully
predicts the shear viscosity, thermal conductivity and diffusivity of bulk liquids, by
computing the relaxation profile of the auto-correlation functions associated with
fluctuations in the shear stress, heat flux and velocity, respectively. Barrat & Bocquet
(1999a) used this method to relate the viscosity of a fluid subject to planar shear
along the x̂-axis to the dynamic friction coefficient β (defined in § 1) at the liquid/solid
interface starting from the relation

β ≡ µ/LGK
s ∼ (AxykBT )−1

∫ ∞

0

〈Fx(t)Fx(0)〉 dt. (5.1)

Here, Fx(t) denotes the x-component of the force exerted by the wall on the liquid
in equilibrium (i.e. in the absence of shear), the angular brackets 〈·〉 denote the
equilibrium ensemble average and Axy = LxLy is the liquid/solid interfacial area. The
force auto-correlation function can be re-expressed in terms of the density auto-
correlation function (DAF) (Barrat & Bocquet 1999a):

µ/LGK
s ∼ (AxykBT )−1

∫ ∞

0

dt

∫ ∫
dr1 d r2 Fx(r1) Fx(r2) 〈ρ(r1, t)ρ(r2, 0)〉, (5.2)

where r denotes the position of the liquid molecules.
Barrat & Bocquet (1999a) approximated the force exerted by the wall lattice on

the liquid by appealing to a simplified form of the interaction potential energy first
derived by Steele (1973). Steele (1973) showed that the total energy of an isolated
adsorbate gas atom interacting with the atoms in a crystalline solid of given lattice
symmetry can be decomposed as a Fourier series in the position variables in the plane
parallel to the surface (or equivalently, in multiples of the two-dimensional reciprocal
lattice vectors q) under the assumptions of pairwise additivity (gas atom–solid atom)
and inverse power-law interactions. Barrat & Bocquet (1999a) investigated the force
exerted by the exposed (100) face of an FCC lattice by restricting the analysis to the
top layer of wall atoms and only those atoms identified by the shortest reciprocal
lattice vector q || since these terms dominate the sum. Under these assumptions, a
simplified potential

V (x, y, z) = Vo(z) + V1(z)[cos(q||x) + cos(q||y)] (5.3)
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was used where z denotes the vertical distance of the fluid particles from the wall
atoms and x = (x, y) represents the position of fluid particles within the (x, y)-plane.
For LJ interactions, the term Vo(z), which corresponds to the q =0 term in the Fourier
series, scales as 0.4σ 10

wf /z10 − σ 4
wf /z4; V1(z) represents the additional contribution to

the potential energy from the lateral arrangement of wall atoms within a plane which
depends on lattice symmetry and relative size. The complete expression for V (x, y, z),
which incorporates the sum over all reciprocal lattice vectors and all layers comprising
the solid wall, can be found in Steele (1973) for various lattice symmetries. Since
Fx = −∂V/∂x, the approximate wall force is then given by Fx(x, z) = q||V1(z) sin(q||x).
Smith, Robbins & Cieplak (1996) used a slightly different form of the wall potential
for which V1(z) → f V1(z) so that the corrugation amplitude of the underlying lattice
could be varied without modifying the adsorption energy Vo(z). They investigated the
dependence of the slip length on the parameter f for 0.05 � f � 1.6. Their analysis
was conducted in support of friction experiments involving monolayer films of gas
atoms deposited on substrates subject to lateral oscillation using a quartz crystal
microbalance. One of the main conclusions of that study was that the slip time
tslip ∝ Ls ∼ f −2.

In the current study, it is desirable to separate the effect of the intrinsic interaction
between the wall atoms and liquid molecules from the influence of surface roughness.
We therefore propose a simplified model potential of the form

V (x, y, z) = Vo(z) +
a

σ
Ṽ1(z) cos(kx) +

b

σ
Ṽ1(z)[cos(q||x) + cos(q||y)], (5.4)

where k =2π/λ is the wavenumber corresponding to a one-dimensional sinusoidal
modulation of the wall surface. This model potential is not derived from Steele (1973)
but represents only an approximate interaction potential which incorporates to first
order the combined effects of fluid–wall interactions and substrate corrugation. The
prefactor a represents the corrugation amplitude in terms of the LJ length scale σ ; b
represents an effective embedding depth for the fluid particles within the solid lattice.
The term Ṽ1(z) represents an effective scaling potential.

The x-component of the wall force is then given by

Fx(x, z) ∼ Ṽ1(z)

σ
[a k sin(kx) + b q|| sin(q||x)], (5.5)

where the magnitude of the shortest reciprocal lattice vector corresponding to the
simulations in § 2 is given by q|| = 4.52 σ −1. Upon substitution of (5.5) into (5.2), we
find

µ/LGK
s ∼ (Axyσ

2kBT )−1

×
∫ ∞

0

dt

∫
dx1 dy1 dz1

∫
dx2 dy2 dz2〈ρ(x1, z1, t)ρ(x2, z2, 0)〉Ṽ1(z1)Ṽ1(z2)

× {q||
2b2 sin(q||x1) sin(q||x2) + k2a2 sin(kx1) sin(kx2)

+ abq||k[sin(q||x1) sin(kx2) + sin(kx1) sin(q||x2)]}. (5.6)

This equation can be simplified with reference to the Fourier transform of the fluid
density in the plane of the substrate

ρq(z; t) =

∫
ρ(x, z; t)eiq·x dx, (5.7)
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where q lies in the (x, y)-plane. Translational invariance of the density along
the x̂-axis (direction of shear) requires that 〈ρ(x1, t)ρ(x2, 0)〉 =〈ρ(x1 − x2, t)ρ(0, 0)〉,
which leads to the following relation for the (complex) Fourier coefficients, namely
〈ρk(t)ρq(0)〉δq,−k = 〈ρk(t)ρ−k(0)〉 =〈ρk(t)ρ

∗
k (0)〉. Equation (5.6) therefore reduces to

µ/LGK
s ∼

∫ ∞

0

dt

∫ ∫
dz1 dz2 Ṽ1(z1)Ṽ1(z2)

× [a2k2〈ρk(z1, t)ρ−k(z2, 0)〉 + b2q2
|| 〈ρq||(z1, t)ρ−q||(z2, 0)〉]. (5.8)

Barrat & Bocquet (1999a) confirmed for the case of a flat wall that the DAF
undergoes a diffusive-type relaxation according to

〈ρq||(t)ρ−q||(0)〉 = exp(−Dq||q||
2t)〈ρq||ρ−q|| 〉 (5.9)

where 〈ρq||ρ−q|| 〉 is the static auto-correlation function and Dq|| represents the in-plane
diffusion coefficient describing the relaxation of density fluctuations within the first
liquid layer. For a wall force given by (5.5), we find that the decay of the DAFs is
instead described by stretched exponentials (Williams & Watts 1970) of the form

〈ρq||(z1, t)ρ−q||(z2, 0)〉 = exp[−(Aq||q
2
|| t)

βq|| ]〈ρq||(z1)ρ−q||(z2)〉 (5.10)

and

〈ρk(z1, t)ρ−k(z2, 0)〉 = exp[−(Akk
2t)βk ]〈ρk(z1)ρ−k(z2)〉, (5.11)

where A and β represent fitting parameters determined from the MD simulations.
Stretched exponentials often occur in systems subject to an intrinsic non-exponential
relaxation or to a net relaxation caused by a spatially heterogeneous distribution
of relaxation times. In our case, the non-exponential decay can be traced to the
fact that the wavenumbers q|| and k are slightly displaced from the wavenumber
(approximately 2π/σ ) corresponding to the maximum peak in the in-plane liquid
structure factor. The time integration in (5.8) then yields the coefficients proportional
to each term in the sum (5.8), namely (1/βq||)/(βq||Aq||q||

2) and (1/βk)/(βkAkk
2)

where  denotes the Gamma function. The simulations yielded Aq|| =0.20±0.02 σ 2/τ ,

Ak = 0.48 ± 0.02 σ 2/τ, β(q||) = 0.80 ± 0.05 and β(k) = 0.67 ± 0.05 for k = 3.45 σ −1,
corresponding to the smallest-wavelength corrugation examined in § 4.2.

In the MD simulations, the presence of a solid wall causes density oscillations in
the adjacent liquid (not shown), with a maximum peak corresponding to the dense
packing of liquid molecules in the first liquid layer. The dominant contribution to
(5.8) can be estimated from the terms z1 ≈ z2, where z1 from hereon denotes the
z-coordinate of the peak in the density profile ρ(z). Under this assumption, the DAF
can be re-expressed in terms of the structure factor characterizing the first liquid layer
where 〈ρq||(z1)ρ−q||(z2)〉 ≈ Axy〈ρ(z1)〉δ(z1 − z2)S1(q||) and

S1(q||) =
1

Axy〈ρ(z1)〉

∣∣∣ ∑
i

eiq||xi

∣∣∣2. (5.12)

The factor Axy〈ρ(z1)〉 normalizes the summation by the number of fluid particles in
the first layer. This simplification yields

µ/LGK
s ∼ ρc

σ 2kBT

∫
dzṼ 2

1 (z)[b2S1(q||)/Dq|| + a2S1(k)/Dk], (5.13)

where the effective diffusion coefficients are given by Dα =Aαβα/Γ (1/βα) for α = q||, k
and the contact density ρc =ρ(z1). The final relation for the effective slip length is
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Figure 7. Comparison of the analytic result (5.14) (dashed line) obtained from the simplified
Green–Kubo analysis with results of MD simulations (diamonds – same data as in figure 6)
for 0 � ka � 0.2 where λ=2π/k =1.82 σ . The only fitting parameter is b = 0.01 σ .

then given by

LGK
s (a)

Ls(a = 0)
=

[
1 +

a2

b2

S1(k)

Dk

Dq||

S1(q||)

]−1

. (5.14)

where the intrinsic slip length Ls(a =0) ∝ Dq||/[b
2S1(q||)]. As is evident, an increase in

the wall modulation amplitude a leads to a decrease in the effective slip length which
scales as a−2. The same scaling has been reported by Smith et al. (1996) in studies of
isolated gas atoms interacting with a crystalline lattice.

Figure 7 is a direct comparison of the slip length as computed from the velocity
profiles in the MD simulations (same data as in figure 6) with the analytic prediction
(5.14) for λ= 1.82 σ where the only fitting parameter is b = 0.01σ . As in § 4.2,
the slip length corresponding to a flat wall was set to Ls(a =0) = (10.0 ± 0.3)σ .
The quantities in (5.14) were computed from equilibrium MD simulations where
S1(q||) = limt→0(N1)

−1〈ρq||(t)ρ−q||(0)〉 and N1 is the average number of particles in the
first liquid layer. Within statistical errors, the ratio S(k)Dq||/S(q||)Dk =0.20 ± 0.02
was found to be independent of a for 0 � ka � 0.2. The agreement between the MD
results and (5.14) is rather good throughout the range 0 � ka � 0.15, or equivalently for
amplitudes a � 0.043 σ . The molecular simulation data fall systematically below the
dashed curve beyond this range. For ka =0.3 (i.e. a = 0.086 σ ), the no-slip condition
is recovered; as ka → 1, Ls → −1.0 σ indicative of a trapped layer of liquid adjacent
to the wall.

The excellent correspondence between the MD simulations and this simplified
model for ka � 0.15 (i.e. in the limit of molecular-scale roughness) suggests that the
friction coefficient can be simply viewed as the summation of two independent sources
of resistance to flow, one from the LJ interactions between the liquid and a flat wall
and the other from the potential describing small-scale topological features or surface
roughness. This description is only valid, however, for sufficiently small amplitudes
and wavelengths close to σ , the characteristic length scale established by the LJ
interactions. The MD simulations show that disturbances from the wall modulation
distort the flow field within a distance λ of the wall. Corrugation wavelengths larger
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than molecular-scale distortions therefore perturb the liquid well beyond the first
layer thereby violating the assumptions leading to (5.14).

6. Conclusions
The slip length characterizing the surface of contact between a liquid and solid

in relative motion is influenced by a number of factors. These include the intrinsic
affinity and commensurability between the liquid and solid molecular size as well as
the surface roughness caused by imperfections and other heterogeneities. In this paper,
we investigate the effects of periodic roughness by modelling the bounding surface as
a sinusoid of amplitude a and wavenumber k = 2π/λ and examine the behaviour of
the slip length as a function of ka. We restrict this study to Newtonian liquids subject
to steady planar shear where in the MD simulations Re � 10 and in the continuum
solutions Re =0. The solutions obtained from MD simulations are directly compared
to the Stokes flow solutions as well as a simplified statistical mechanical model for
the friction coefficient between the wall and first liquid layer. In all cases examined,
the slip length decreases monotonically with increasing values of ka. A no-slip or
even negative-slip boundary condition can be obtained for sufficiently large values of
ka. In general, the smaller the corrugation wavelength, the smaller the corrugation
amplitude required to reproduce such immobilization conditions.

The MD results recover the continuum solutions in the Stokes regime in the limit of
small ka and large λ. This agreement demonstrates that molecular-based simulations
can successfully reproduce hydrodynamic predictions provided that the length scales
characterizing substrate inhomogeneities are large compared to the liquid molecular
diameter. This restriction forms the basis of the continuum approximation underlying
the hydrodynamic equations of motion. As the substrate wavelength approaches
length scales comparable with the liquid molecular diameter, the continuum solutions
overestimate the degree of slip. In this case, the continuum analysis is unable to
capture the effects associated with fluid particle trapping by molecular-scale wall
corrugations.

In the limit where the corrugation wavelength approaches the liquid molecular
diameter, we develop a simplified model of the friction coefficient characterizing the
liquid/solid interface based on an earlier study of Barrat & Bocquet (1999a). The
friction coefficient is inversely proportional to the slip length. The slip length, which
effectively represents the linear response of the system to flow at low shear rates,
is shown to be proportional to the decay rate of spontaneous equilibrium density
fluctuations in the presence of a wavy wall. The potential energy exerted by the
wavy wall exhibits two competing wavelengths, one set by the lattice sites comprising
a flat crystalline wall and the other set by the topological modulation describing
a periodically roughened wall. A direct comparison between the resulting analytic
relation for the effective slip length and the MD results shows excellent agreement
for the smallest wavelength studied, namely λ=1.82 σ .

Despite the success in providing an analytic description for the MD results for
small- and large-wavelength modulation, there is interest in designing algorithms that
can smoothly span length scales from the molecular to macroscopic dimensions.
Hybrid algorithms have been proposed which can successfully stitch together
the results of MD simulations with large-scale continuum solvers. O’Connell &
Thompson (1995) were the first to develop a hybrid approach based on constrained
dynamics in an overlap region bridging the particle (MD) and continuum solutions.
This technique was applied to the transient startup problem for plane Couette flow
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where the overlap regime is oriented parallel to the solid boundaries. Subsequent
studies by a number of groups have refined and extended this approach to problems
involving multiple time scales and more complex flows (Hadjiconstantinou & Patera
1997; Li, Liao & Yip 1998; Flekkoy, Wagner & Feder 2000; Nie et al. 2004; Ren &
E 2005) including rather difficult systems involving the flow of water in the vicinity of
carbon nanotubes (see the review by Koumoutsakos (2005) and references therein).
These approaches have proved extremely successful in reproducing flow characteristics
spanning multiple scales and will probably become a mainstay of hydrodynamic
simulations. It would be interesting next to develop such hybrid approaches for
investigating both shear and pressure-driven flow along periodically roughened and
randomly roughened surfaces.
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